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A numerical solution technique for the axisymmetric flow in a differentially heated, rotating 
spherical annulus is developed. This method, based on the incompressible Navier-Stokes 
equations, simulates the Atmospheric General Circulation Experiment (AGCE) proposed for 
a future Shuttle mission. In the method a pseudospectral technique is used in the latitudinal 
direction, and a second-order accurate linite difference scheme discretizes time and radial 
derivatives. This pseudospectral/finite difference (PS/FD) method is applied to a hierarchy of 
cases of varying difliculty. The diff’cult cases are characterized by thinner Ekman layers 
resulting from higher rotation rates, larger difference in boundary temperatures, and stronger 
body forces. Comparison of the results establishes the higher accuracy and efficiency of the 
PS/FD method over the pure second-order accurate finite difference (FD) method. This paper 
discusses the development and performance of a mixed PS/FD model for the AGCE which 
has been modelled in the past only by pure FD formulations. ct 1986 Academic Press. Inc. 

1. INTRODUCTION 

The near zero gravity environment of the Shuttle presents the opportunity for the 
experimental simulation of the planetary atmosphere. A model experiment of the 
earth’s atmospheric circulation, known as the Atmospheric General Circulation 
Experiment (AGCE), has been proposed for a later Spacelab flight [2]. The 
experiment will consist of concentric spheres rotating as a solid body as illustrated 
in Fig. 1. A dielectric fluid will be confined in a portion of the gap between the 
spheres by placing solid walls in the spherical domain. The annuus is subdivided to 
provide room for instrumentation. Temperature profiles on the spheres will 
simulate the equator to pole distribution and establish the large-scale vertical 
stability (warmer outer sphere) of the atmosphere. The gravitational body force on 
the atmosphere is simulated by application of an electric field across the gap which 
generates a radial body force in the dielectric fluid. It is the simulation of this force 
which requires the zero gravity environment of space, since the earth’s gravitational 
force would greatly distort the simulated gravitational force field of the experiment. 
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FIG. 1. Cutaway view of physical model. 

A numerical model of the AGCE is needed to study the flow patterns as a 
function of varying experimental parameters such as rotation rates, thermal boun- 
dary conditions, or gravitational distribution across the gap. Finite difference 
models to determine the basic (axisymmetric) states have been developed [4, 121. 
In those studies the effects of using a dielectric to simulate terrestrial gravity were, 
however, not addressed. Such effects are considered in [lo]. 

Memory limitations imposed by the computing hardware (VAX 11/780) 
precluded an adequate check of the accuracy of the solutions produced by the finite 
difference FD models. However, spectral methods allow for much coarser grids and 
higher order accuracy so that resolution resuirements may be met and verified with 
the limited storage. 

A hybrid scheme involving a pseudospectral latitudinal formulation and finite dif- 
ference radial and time discretization was chosen for simplicity. However, as will be 
demonstrated, the finite difference discretization in the radial direction resolved the 
flow field on a coarser grid when coupled with the pseudospectral formulation as 
opposed to pure finite difference schemes. 

In addition to the high accuracy one obtains with spectral methods, solutions 
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converged to a steady state (up to machine accuracy on a VAX 1 l/780) more 
quickly than the pure FD models. It was sufficient to use spectral methods in only 
one direction (latitude) and FD for the time and radial dependencies to achieve the 
above results. 

Orszag and Israeli [ 171 and Orszag [ 161 applied a mixed spectral/finite dif- 
ference scheme to the axisymmetric Stokes flow between concentric rotating 
spheres. The numerical model used a vorticity/stream function formulation. Taking 
advantage of the periodic flow, a modified Fourier series was used to expand the 
field variables. The present study retains the nonlinear advection terms in the 
Navier-Stokes equations coupled with the energy equation. The latitudinal depen- 
dence is expressed in terms of Tschebyshev polynomials as the latitudinal side walls 
(see Fig. 1) preclu.de the otherwise periodic flow in this direction. Other examples 
utilizing hybrid schemes can be found in Roache [21], Zang and Hussaini [ZS], or 
Reddy [19]. 

Merilees [ 111 made a series of numerical experiments to test the accuracy of the 
pseudospectral method. The tests were applied to the shallow water equations in 
spherical coordinates. The method was found to be more accurate than a fourth 
order FD scheme for the same resolution. However, questions concerning higher 
accuracy and efficiency (relative to a FD formulation) of spectral methods for coar- 
ser grids than the cases discussed in Merilees’ model remained unanswered. 
Merilees’ intent was to show the capability of pseudospectral methods and not to 
establish its advantages over finite difference schemes. Such questions will be 
addressed in the numerical study which follows. 

In a spectral formulation the choice of expansion functions should be governed 
by the geometry of the problem as well as the ease and efficiency of implementation. 
Orszag and Israeli [ 181 have given some criteria on the type of functions to be used 
for different geometries. Both the spherical harmonics and Fourier series are 
optimal for periodic boundary conditions in the iatitudinal direction. Efficient 
techniques using Fourier series applied to fluid-dynamical computations are given 

by Orszag [ 131. However, the periodicity condition is violated in the AGCE due to 
the side walls. Depending on the final AGCE design these walls will be located at 
some latitudinal position. In the following numerical model these walls will be 
located at symmetric positions about the equator. This nonperiodicity in the 
latitudinal direction as well as the formation of boundary layers next to these si 
walls makes Tschebyshev polynomials a proper choice of expansion functions, since 
they allow for sharp boundary layer resolution and are applicable for nonperiodic 
conditions. 

In this paper the equations governing the flow field of the AGCE are formulated 
followed by a development of the pseudospectral/finite difference scheme used in 
calculating the basic axisymmetric flow. Finally, selected results are presented to 
illustrate the advantages of the present approach. 
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Nomenclature 

IfI 
Coefficient of thermal expansion 
Radial diffusion coefficient at (i + 1 )st mesh point 

AGCE Atmospheric General Circulation Experiment 
B 
C 
Ek 
FD 

dr 
H 
k 
N 
NR 
P 
PS 
Pr 
Y 
r’ 

ri 

r. 
T 
T’ 

To 
u 
V 

W 

Z 

CI 

Y 

6 

Radial-diffusion coefficient at ith mesh point 
Radial diffusion coefficient at (i - 1 )st mesh point 
Ekman number 
Finite difference 
Gravitational acceleration (cm/s2) 
Grashof number 
ReR2, where R is delined in Eq. (45) 
Thermal conductivity (Cal/C. s) 
Upper truncation limit in Tschebyshev expansions 
Number of points in radial mesh 
Pressure (dyn/cm2) 
Pseudospectral 
Prandlt number 
Radial variable (cm) 
Nondimensional radius, r/r0 
Inner radius (cm) 
Outer radius (cm) 
Temperature (“C) 
Nondimensional temperature 
Reference fluid temperature (“C) 
Zonal (azimuthal) velocity (cm/s) 
Latitudinal velocity (cm/s) 
Radial velocity (cm/s) 
Transformed 8 variable for Tschebyshev polynomial domain 
Angle location of latitudinal wall (radians) 
Parameter which determines degree of implicitness of radial diffusion terms 
Co-latitudinal angle measured from the z to y axis, or north to south 

(radians) 
Thermal diffusivity (cm2/s) 
Azimuthal component of vorticity x r sin 0 (cm/s) 
Nondimensional 5 
Density of the fluid (g/cm’) 
Reference density of the fluid (g/cm’) 
Azimuthal angle measured from the x to y axis, or west to east (radians) 
Stokes’ stream function (cm”/s) 
Nondimensional stream function 
Azimuthal component of angular momentum per unit mass relative to the 

rotating frame 
Solid body rotation rate (rad/s) 
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2. FORMULATION OF EQUATIONS 

The governing equations are given below in spherical polar coordinates (Fig. 2) 
which rotate with the apparatus at the constant angular velocity ,Q about the 2 axis. 
Equations (l)-(3) are the momentum equations in the 4, 8, and r directions, respec- 
tively, Eq. (4) is the energy equation and Eq. 5 is the mass conservation equation. 
The 4 (azimuthal), 8 (latitudinal), and P (radial) components of velocities are given 
by U, u, and w, respectively. The exponent IZ, appearing in Eq. (3) is 0 for a uniform 
gravitational field, 2 for terrestrial gravity, or 5, which is appropriate for a dielectric 
force as used in the AGCE [7]. 

au uw uvcot e g+q;+w~+-+- Y r 

= -29(w) sin 8 + 21 cos 0) + v 
( 
V*u - & 

i 

au vav au VW u2cot e 
-g+;g+u'g+--- 

r Y 

-iiP 
=-+2Qusin@+v 

2 dv sin 0 
dr 

V’w-2K------ 
r* r* sin e ae 

(3) 

FIG. 2. The spherical coordinate system 
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g+g+ w g= lcV2T 

$i(r2~)+&-$(~sin8)=0. 

(4) 

(5) 

The equations are cast in a vorticity/stream function formulation with the new 
variables vorticity (c), stream function (@), and swirl (CB) defined below. 

5 = r sin t!Fl(V x P), 

1 a* 
W=r2sin 

1 a* f,)= --- 
r sin 8 ar 

(6) 

(7) 

Co 
u=- 

r sin 19’ 

The momentum and energy equations are nondimensionalized to facilitate com- 
parison of results. The independent variables, r and t, are nondimensionalized by 
outer sphere radius and rotation rate, respectively. In nondimensionalizing tem- 
perature, the maximum temperature difference occurring on the latitudinal walls 
(T, - TL) was chosen. The characteristic radial velocity is taken as the solid body 
rotation rate (Q) divided by the gap width (r,, - r,); all other length scales are non- 
dimensionalized by the outer sphere radius (ro). Nondimensional variables, denoted 
by primes, are given in Eqs. (10) through (14): 

T=(T"-T,)T'+TL 

t = r,Q~’ 

II/ = *‘r~Q 

m = o’r~l2 

8= Pr,Q,. 

(10) 

(11) 

(12) 

(13) 

(14) 

When these equations are substituted into the dimensional equations ((1) through 
(5)) the nondimensional Grashof (Gr), Ekman (Ek), and Prandtl (Pr) numbers, 
defined in Eqs. (15) through (17), result: 

Gr=w(Tu-TT,!4 
V2 

(15) 
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Ek=-!- 
l&Q, (16) 

pr2 
lc’ 

(171 

The nondimensional momentum and energy equations (where unprimed 
variables are here nondimensional) are 

DT Ek 
Dt=PrV2T 

D2i,b = <, 

where 

D2-PIsinBa 1 a -- 
i 1 
-- 

dr2 r2 ae sin 8 a0 

Da 1 

( 

a+ a a* a 
E=at-r2 aYae-aedY > 

V*=$ gr2$ +&jj 
( j 

a sin ST- . 
( 1 8% 

The fluid is assumed to be incompressible except for the thermal expansion which 
produces a bouyancy. The density variation in the bouyancy term is represented by 

P = PO(~ - 4T- To)), (25 1 

which is the classical Boussinesq approximation valid for flows with small density 
variations. 

Boundary conditions appropriate for the AGCE as given in Eqs. (26) through 
(32) involve the no-slip condition and conducting walls. The numerical boun 
condition for the vorticity is discussed in Section 3. 
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$(Q, Vi) = $(@ ro) = 0 7114 < e < 3?C/4 (27) 

o(e, ri) = co(0, ro) = 0 7114 6 e 6 37114 (29) 

T(f,r)=T[3i,r)=mr-r, ri 6 r 6 r. 

m= 
T(n/4, ro) - 7l7d4, ri) 

r. - rr 

T(B, ri) = -sin2 28 

T(Q, ro) = c0s2 28 

n/4 G e 6 3n/4 

n/4 6 8 6 3z/4. 

(31) 

(32) 

3. SOLUTION TECHNIQUE 

The governing equations are approximated by a pseudospectral discretization for 
the latitudinal derivatives and a finite difference discretization for the radial and 
time derivatives. The 6 domain is determined by the location of the latitudinal side 
walls at 8= a and 8 = 7~ -LX, which are therefore symmetric about an equator 
located at n/2 as was shown in Fig. 1. The pseudospectral development of the 
latitudinal dependence will be the initial focus of this section. 

Pseudospectral Formulation 

The typical Tschebyshev collocation points are zi = cos[rrj/N] for j= 0, l,..., N. 
Since these points are clustered naturally near the endpoints of the domain, the 
boundary layers forming at the latitudinal walls are well resolved. 

The physical domain a < 8 <Z--M is mapped onto the computational domain 
- 1 <z < 1 with the transformation 

2e-E 
z=- 

n-2a’ (331 

The Tschebyshev pseudospectral formulation for the latitudinal dependence of 
the model can be summarized as follows (vorticity is used for example): 

1. Determine the initial conditions of the vorticity (<) flow field. Then, at 
each time step 

2. Determine N coefficients b,(t) (n=O, l,..., N) so that 

i;(r, Zj, t) = f b, Tn(zj) Odj<N. 
If=0 

(34) 
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These coeflicients are calculated by 

where co = C,,,= 2, and c, = 1 for 0 <n < N. These coefficients are needed only to 
evaluate derivatives since the pseudospectral technique involves solving the 
equations in physical space rather than in the spectral space with transforms used 
only to evaluate derivatives [14, 151. 

3. Evaluate a</az by differentiating Eq. (34): 

,= f b,T&)= 2 s,T,(zJ 
7 n=O n=O 

where 

s,,=-$ 2 pb, for p+nodd. 
n p=n+l 

(36) 

(37) 

In order to avoid N2 operations to evaluate Eq. (36) the s, may be obtained by a 
recursion formula [S]. Since differentiation involves a degree loss of the order of 
the Tschebyshev polynomial, s,,, is set equal to 0. The remaining coefficients are 
obtained from the relations 

~,J,=sc,+~)+~(~+ l&z+,, n<N-2 (38) 

and s(,+ 1, = 2Nb,. 
Using Eq. (38), only O(N) operations are needed to obtain s, from b,. 

4. The second derivatives are obtained in a similar manner: 

= -f b,T;(zj) = 2 Y, T,,(zj). 
.i n=O TZ=O 

(39) 

In this case the recursion formula given in Eq. (38) is used where the coefficients Y,~ 
are obtained from the first derivative coefficients: 

czG=%l+2]+2(~+ l)S(n+l, n<N-2. (40) 

In evaluating the 8 derivatives, a substantial gain in speed was obtained by 
setting up the matrix equivalent of the pseudospectral derivative formulation 
[6, 23, 26-j. These matrices were set up outside of the time stepping process so that 
derivative evaluation involved only a simple matrix multiplication. 

5. Finally, evaluate the unknowns in Eqs. (18) through (21) by solving, in 
physical space, at the collocation points, and proceed to the next time level. 

Implementation of boundary conditions are the next consideration. Since the 
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coordinate system is rotating, all motion is relative to the solid body rotation rate 
Q. Therefore the variable o, which is proportional to the zonal velocity, is initially 
zero throughout the interior. For no-slip conditions all velocities are zero at the 
surrounding walls which implies that CIJ is zero at these walls. Since the solid walls 
are streamlines, any constant value of $ may be selected; the conventional choice is 
to set $ equal to zero. Temperature boundary conditions are fixed for all time since 
the model assumes conducting walls. A profile represented by -sin2 20 is chosen at 
the inner sphere, and cos’ 2% at the outer sphere. Such a profile gives a stable radial 
temperature profile (warmer outer sphere) and unstable latitudinal distribution 
(temperature decreases from the equator to the pole). These trigonometric functions 
are chosen since symmetric conditions are automatically imposed about the 
equator. In addition, such a profile is similar to the conduction solution for a 
spherical shell. At the latitudinal walls, temperature is linearly interpolated between 
specified corner temperatures. 

The vorticity boundary conditions are derived so that the no-slip conditions are 
satisfied. This is done by setting 8$/a% at the latitudinal walls equal to zero. From 
Eq. (0 

rwali= -sin% 
( 

,~+y-~)lllI=(sin%~)~~,, 

Recalling that 

1 w l+,=---- 
r2 sin % a% 

(41) 

(421 

so that 

aw 
a% I ! 

i -coda+ - rz 
wall 7m-%+&3)wa,,=(Az)*,,, (43) 

we therefore obtain 

(44) 

Since in a spectral formulation second derivatives are linear combinations of first 
derivatives, the no-slip condition is applied by calculating the second derivative of 
the stream function, given in Eq. (44), from a first derivative field having zero 
values at the boundaries. 

The flow field variables are either symmetric or antisymmetric about the equator 
at rc/2 since latitudinal walls are located at 1r/4 and 37~14 in this study. Therefore, 
flow field variables need only be calculated for half the domain if the symmetries are 
imposed. 
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Finite Difference Formulation 

In the radial direction, high resolution is needed near the spherical boundaries 
where Ekman layer (boundary layers near the curved surfaces) formation occurs. 
The physical domain ri < r < r0 is therefore mapped onto the computational domain 
-e < E-I< e, where H is defined in Eq. (45). Several exponential or logarithmic 
functions would serve as a satisfactory choice for H [22] since the function must 
increase linearly in the interior and much more rapidly near the endpoints. The 
function given below gave a distribution of points which resolved the Ekman layers 
in this study: 

H(r) = Re@ where R = 
2r - ri - r0 

rO-ri ’ 

As discussed in the pseudospectral formulation, the stream function and swirl are 
zero at the solid walls, and the temperature profile is proportional to -sin2(28) at 
the inner sphere and cos2(28) at the outer sphere. For proper application of the no- 
slip condition, vorticity values at the boundary must incorporate this assumption. 
Williams [24] derived a vorticity boundary condition, consistent with a second- 
order accurate scheme, which is given in Eq. (51). This condition is sometimes 
referred to as Jensen’s condition [20]. If the radial wall position is denoted as grid 
point one and the variable y1 denotes grid points in the latitude, the boundary con- 
dition for vorticity is 

= -$ 
[ 

3.5$(n, 1) + 0.5$(n, 3) - 4$(n, 2) + 3dr 01 g + O(dr)’ 
Wail 

=& [T3.5$(% 1) + 0.5+(& 3) - 4$(n, 2)] + O(dr)*. (46) 

In this way the no-slip boundary condition is allowed to diffuse into the overall 
system. 

Poisson Solution for Stream Function 

The Poisson equation for stream function was solved in two ways. Initially a 
pseudo-time derivative was introduced so that at steady state the Poisson equation 
would be satisfied. During this internal iteration, latitudinal derivatives were not 
updated. In other words, the following equation was solved: 

a’$ -f --T- ar 

581/62,‘2-4 

(47) 
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where 

sin 0 a 
f=-- 1 a* 

( 1 
-- +(. 

r2 80 sin e ae (48) 

Representing the pseudo-time parameter as r and the global time iteration as t, 
Eqs. (47) and (48) are therefore 

Y “1; FE (“2*;r1”‘:2)I-y2@ (-!-GJf+ (()‘+6’, (49) 

Alternatively, the matrix corresponding to the Laplacian operator was inverted by 
a conventional LU decomposition and back solution. 

The former technique allowed an order of magnitude larger global time step (at) 
to be used in the global ite-ration as compared to when the direct Poisson solver 
was used. Since the rj field evolved more slowly due to the non-updated latitudinal 
derivatives, however, more global iterations were required. 

Time Discretization 

For convenience the equation form may be written as 

af Z=NLT+@T+vD2$ (50) 

These equations are solved uncoupled but implicitly in terms of the radial diffusion 
terms. The nonlinear terms (NLT), rotation terms (QT), and spectral diffusion 
terms (latitudinal derivatives in vD*f) are handled explicitly. The rotation and non- 
linear advection terms utilize updated values of stream function to evaluate 
derivatives which were found to relax the time interval restriction considerably, as 
one would expect. Although the spectral diffusion terms were handled explicity the 
stringent time step restriction associated with a Tschebyshev mesh was not severe 
since the mesh was fairly coarse. 

The equations are written in tridiagonal form with respect to the radial 
derivatives. The swirl equation will be used to show the equation format. Again, n 
denotes a given tJ position and i denotes radial points: 

1 
-w~:bf-y[AjCo,,i+l +Biw,,i+Cjo,,i_,]‘+6’ 
6t 

=~“:,i+(l-Y)Cnio.,i+~+B,W,,+C,W,*,i-,l’ 

+ NLT’ + QTf + (0 viscous terms)‘. (51) 
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4. MODEL VERIFICATION 

Diagnostics 

To determine whether the flow field was accurately resolved a case representative 
of the AGCE was selected, having an acceleration due to gravity equal to 980 cm/s’ 
and a solid body rotation rate of 1 rad/s. The fluid was silicone oil (properties are 
listed in Table I). The inner and outer sphere radii were set equal to 5 and 6 cm, 
respectively. This case was calculated at three resolutions, 8 x 12, 16 x 12, and 
32 x 12, where the first number refers to the number of mesh points in the latitude 
from 7c/4 to n/2, and the second number is the number of mesh points in the radial 
direction. To assess the agreement between the different resolutions a difference 
norm was calculated at matching latitudinal points. The difference norm should 
decrease as resolutions are increased which would indicate that the flow field was 
better resolved as grids became finer. The difference norm is defined in the following 
equation, where F is a given flow field variable; subscripts 1 and 2 signify different 
resolutions, and NR refers to the number of radial points. F,,, is the maximum 
value of the flow field quantity for the higher resolution mesh. 

difference nOrm = CC,“= 1 CF,(FI(~> 4 - F,(nv i))210.5 
N x Fmax 

Difference norms for the 8 x 12 and 16 x 12 resolutions were on the order of la- 3, 
and 10 P6 to lop7 for the 16 x 12 and the 32 x 12 resolutions, which indicates that 
the 16 x 12 mesh is as accurate as the 32 x 12 mesh. Difference norm calculations 
are given in Table II. 

A mass and heat balance over the flow field domain was also used to verify the 
model. Since there are no sources or sinks in the model and the flow is steady, the 
amount of heat entering the domain must equal the amount escaping. These beat 
fluxes described by Fourier’s law were calculated by integrating along the boun- 
dary. Figure 3 identifies the parameters and direction of heat flow assumed. A mass 
balance was evaluated at all points in the flow field. For this diagnostic velocities in 
the conservation of mass equation were nondimensionalized by maximum velocities 
in the flow field. 

TABLE I 

Silicone Oil Properties 

Property Value 

Kinematic viscosity (v) 10-ZcmZ s-l 
Thermal diffusivity (K) 5.96 x 10e4 cm’ s-’ 
Expansivity (a) 1.34 x 10-A ‘C-’ 
Prandtl number (Pr) 16.8 
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TABLE II 

Difference Norm Calculations 

Resolutions 
compared t $ Co T 

8x 12,16x12 3.29 x 1O-3 2.05 x 10W3 3.79 x 10-j 2.33 x 10m3 
16 x 12, 32 x 12 1.83 x 10m6 4.12 x lo-’ 7.52 x lo-’ 7.84 x lo-’ 

Periodic calculations during the time iteration process were made to ascertain the 
amount of change occurring between two succeeding time steps. These residuals are 
defined by 

F *+a 
(residual of F)r+Br = 

- F’ 

F r+& (53) 

and substantiated that the solution was converging. 

Convergence Criteria 

Criteria established to etermine when a steady state solution had been achieved 
involved the diagnostic tests just discussed. The following conditions were required 
to establish adequate convergence: 

1. The ratio of the amount of heat entering the flow field domain over that 
leaving, subtracted from one, was within 5 % of zero. 

FIG. 3. Heat balance diagram. 
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2. The conservation of mass equation was satisfied, after normalization, to 
within 10e4 and lop5 of zero. 

3. Residuals calculated from Eq. (53) were on the order of 10e6 to IO-’ 
(machine zero), and persisted for at least 100 s (approximately 2000 iterations). 

Test Cases 

Closed-form solutions for the system of equations ((18) through (21)) of this 
study are not possible. In lieu of an analytical solution, an existing finite difference 
numerical solution for the same geometrical configuration was used for validation 
purposes [4]. This numerical solution is a pure FD model of the AGCE which was 
written in a general format to accommodate cylindrical as well as spherical 
geometries. The finite difference code has been verified with experimental data from 
a rotating, differentially heated cylindrical annulus, as well as against spherical spin- 
up data, results of which are to be published [9]. (Spin-up is the process by which 
a fluid adjusts to a change in the magnitude of the rotation rate of its container.) 

Four test cases were set up with the Ekman layer being made harder to resolve in 
each succeeding case. The temperature distribution on the outer sphere was chosen 
to be equal to cos2 28, and at the inner sphere -sin2 28. Temperatures on the side 
walls were taken to be linear. The side walls were located at 7114 and 37~14 radians 
(symmetric about the equator). A schematic of this set-up is given in Fig. 3. 

TABLE III 

Test Cases 

Resolution CPU time 6r Number of 
Model (Qxr) (min) (s) iterations 

A. Case I: g = 0.980 cm/s’, Q = 0.001 rad/s 

FD 30 x 20 5.5 200 
P§/FD (y = 0.5) 8x 10 5.2 0.05 1000 

B: Case’ll: g = 9.80 cm/s’, Q = 0.01 raid/s 

&D (y = 0.5) 30 8x10 x 20 14.0 5.2 0.05 1000 500 

C. Case III: g = 98.0 cm/s?, Q = 0.10 radjs 

FD 30 x 20 30.0 1000 
PS/FD (y = 0.5) 8x 12 22.0 0.05 3000 

D. Case IV: g = 980.0 cm/s’, B = 1.0 rad/s 

FD 30 x 20 90.0 4000 
PS/FD (y = 0.5) 16 x 12 98.4 0.03 6000 
PS/FD (y = 1.0) 16 x 12 82.2 0.05 5000 
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ps (A) II x 2” mesh 

P” (-, 3” x 20 mesh 

1.2 

e r&i 

FIG. 4. Case II: TVS 8. 

R.O+ 

t 

-7.0-- -7.0-- 

. . ps ps (A) (A) 8 x 20 mesh 8 x 20 mesh 

FD FD (-) (-) 30 x 20 mesh 30 x 20 mesh 

-12.0 I -12.0 I 
0.7 0.7 1.2 1.2 

e l-ad e l-ad 

FIG. 5. Case FIG. 5. Case II: u II: u vs vs 6. 6. 
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FIG. 6. Case IV: t vs 0. 

The four test cases differed in rotation rates and gravitational acceleration as 
indicated in Table III. Different resolutions ranging from a 12 x 8 (12 points in the 
latitude measured from 7c/4 to 7r/2) to a 30 x 20 grid were run by the finite difference 
model. The finite difference model ran these cases at three resolutions: 8 x 12, 
16 x 12, and 30 x 20 (where the first dimension refers to points in the latitude, from 
n/4 to n/2). A comparison of the solutions obtained on the 16 x 12 mesh and 
30 x 20 mesh showed that the coarse grid solution did not resolve the flow field. 

FIG. 7. Case IV: II, vs 8. 
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FIG. 8. Case II: Radial velocity contour plot (contour increment = 1.5 x 10e3), FD Model (12 x 8). 

With the pseudospectral formulation only eight points in the latitude for Cases I 
through III were required. For Case IV the pseudospectral formulation required a 
16 x 12 mesh to resolve the gradients in the boundary layer. These results are sum- 
marized in Table III. Also appearing in Table III are respective CPU times for each 
model to reach convergence. These values should not be regarded as conclusive 
evidence of a PS/FD formulation reaching convergence more quickly than a pure 
FD code since differences exist between their basic formulation. The FD code, writ- 
ten in primitive variable form, utilized a variable time step in its iteration scheme in 
a fully implicit algorithm. The PS/FD model only handled radial diffusion implicity 
and. no attempt was made to vary the time step as iterations proceeded. What 
should be noted are that the much coarser grids allowable in the PS/FD code, 

6.“” 

5.6” 
r 

(cm) 
5.40 

5.2” 

FIG. 9. Case II: Radial velocity contour plot (contour increment = 1.5 x 10-4), FD Model (30 x 20). 
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FIG. 10. Case II: Radial velocity contour plot (contour increment = 1.5 x lo-.“). PS/FD Model 
(8 x 10). 

relative to the finer grids required in the pure FD formulation to attain comparable 

accuracy, allowed the present method to be competitive in machine time. 
A parameter y, which represents the degree of implicitness of the radial diffusion 

terms (see Eq. (51)) was set equal to 0.5 (Crank-Nicolson) for Cases I through III. 
For Case IV it was found that setting y = 1.0 allowed a time interval increase from 
0.03 to 0.05 and a subsequent decrease in CPU time of 17 % (see Table III ). This is 
expected since setting y = 1 is equivalent to a backward Euler scheme which is 
unconditionally stable thus allowing an arbitrarily large time step. Though y = 0.5 is 
also unconditionally stable a large time step will cause some Fourier modes to 
overshoot [20]. 

A quantitative comparison between the two models was carried out by plotting 
flow field variables (5, $, T, and u) against radial positions for given latitudes and 
against latitudinal points for given radial positions. For ease of viewing the com- 
parison, the PS/FD model is represented by discrete points and the FD model by a 
continuous line, since the latter has a greater number of points in its computational 
mesh. At least two positions were chosen per plot, one near the boudary and the 
other slightly beyond this point where a given profile seemed to change significant- 
ly. It was not possible in all cases to obtain comparable radial (or latitudinal) 
points for plotting all theta (or radial) positions since the two models utilized dif- 
ferent nonuniform grids. A cubic spline interpolation was’ applied to the PS/F 
model’s data to obtain comparable radial points with the FD model. To generate 
comparable latitudinal points the Tschebyshev expansion coefficients were used. 
Comparisons of r, +, 5, and u versus r for a given 8 position showed agreement was 
very good. Representative plots from Cases II and IV are given in Figs. 4 through 7. 
Recall that Case II utilized only 8 points in the latitude as opposed to 30 points 
used in the FD formulation, and Case IV, which had the thinnest boundary layers, 
utilized 16 points in the latitude as opposed to the 30 points needed in the FD 
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model. Figures 4 and 5 are plots of temperature and zonal velocity, respectively, 
taken from Case II. Agreement is nearly exact to plotting accuracy. Plots of vor- 
ticity and stream function shown in Figs. 6 and 7 are taken from Case IV. Slight 
discrepancies are noted as would be expected from model differences. 

The test cases run by both the FD and PS/FD model revealed some interesting 
observations regarding a PS formulation, the methodology in the latitude. In all 
four cases a much coarser grid was allowed in the PS/FD model (see Table III), To 
obtain adequate resolution the finite difference model required more than a 16 x 12 
mesh. The PS/FD model utilized an 8 x 10 mesh in Cases I and II, 8 x 12 for Case 
III, and 16 x 12 for Case IV. The coarser grid allowable in the radial direction 
shows that a gain in accuracy for a coarser mesh will be obtained when a finite dif- 
ference scheme is coupled with a pseudospectral formulation. 

To illustrate the different resolution requirements for each model, radial velocity 
contour plots are given in Figs. 8 through 10 for Case II. The abscissa is incremen- 
ted from the wall at 7c/4 to the equator. The FD model was unable to resolve this 
case on a 12 x 8 mesh, whereas the PS formulation gave excellent resolution utili- 
zing an 8 x 10 mesh. Figure 8 shows the FD model results for a 12 x 8 mesh (recall 
that the first dimension refers to points in the latitudinal domain). Comparing these 
results with results in Fig. 9 for a 30 x 20 finite difference mesh, shows the need for 
the higher resolution. Comparison of the results for the pseudospectral 8 x 10 mesh 
is shown in Fig. 10. With roughly one-fourth the number of grid points in the 
latitude, the contours indicate that the pseudospectral results are comparable to the 
30 x 20 FD mesh. 

a. T(0.2) b. CC6 x 10-r) C. *(b x 10-S) 

+ 

~ 

b 

0 

FIG. 11. Case I: Comparative contour plots of T, [, and $I. (a, b, c) Contours of T, 5, and IJ? 
calculated from FD model using a 30 x 20 mesh. (d, e, f) Contours of T, C, and $ calculated from PS/FD 
model using an 8 x 10 mesh. 
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FIG. 12. Case I: Comparative contour plots of velocities. (a, b, c) Contours of a, U, and w calculated 
from FD model using 30 x 20 mesh. (d, e, I) Contours of u, t;, and w calculated from PS/FD model using 
an 8 x 10 mesh. 

FIG. 13. Case IV: Comparative contour plots of T, 5, and $. (a, b, c) Contours of T, <, and $ 
calculated from FD model using a 30 x 20 mesh. (d, e, f) Contours of T, g, and rj calculated from PS/FD 
model using a 16 x 12 mesh. 
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FIG. 14. Case IV: Comparative contour plots of velocities. (a, b, c) Contours of U, o, and w 
calculated from FD model using a 30 x 20 mesh. (d, e, f) Contours of U. U, and w calculated from PS/FD 
model using a 16 x 12 mesh. 

Figures 11 through 14 are the contour plots corresponding to Cases I and IV 
described in Table III. The cross sections shown represents the portion of the gap 
extending from the wall at 7r/4 to the equator. Since symmetry (T, u, CD) or asym- 
metry ($, <, v) is imposed about the equator, only half of the domain is shown. 
Figures 11 and 12 pertain to Case I. Figures 1 la, b, and c, are contour plots of tem- 
perature, vorticity, and stream function calculated by the FD model with a 30 x 20 
mesh. Figures lid, e, and f are the corresponding contour plots from the 
pseudospectral model on an 8 x 10 mesh. Figures 12a, b, and c are the FD contours 
of zonal, latitudinal, and radial velocities on a 30 x 20 mesh, followed by the same 
velocities (Figs.l2d, e, and f) calculated by the PS/FD model. Similarly Figs. 13 to 
14 apply to Case IV. In all cases the pseudospectral formulation required roughly 
one-fourth the number of points except for Case IV where 16 points were required 
in the latitude as opposed to the 30 points used in the FD model. 

5. CONCLUSIONS 

The preceding study concerned the development of a PS/FD model and its sub- 
sequent application to physical cases relevant to the Atmospheric General Cir- 
culation Experiment. A pseudospectral formulation was used in the latitude and 
finite difference discretized time and radial dependencies. It was found that roughly 
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one-seventh to one-third the number of points were needed in the PS/FD model, as 
opposed to a pure FD model of AGCE. 

Pseudospectral derivatives were obtained using a matrix multiplication which 
was found to be faster than the use of fast Fourier transforms [l ] for the small 
number of points needed in this study. The coarse grid and matrix formulation used 
in the PS/FD model allowed converged solutions to be obtained in machine times 
competitive with the FD model. 

In addition to the matrix formulation for spectral derivatives efficiency gains were 
also due to the following considerations. Time step restrictions were substantially 
relaxed by updating derivatives of stream function in the advection and rotation 
terms prior to their usage in the temperature and swirl equations. Non-updated 
latitudinal derivatives for the pseudo-time iteration in the Poisson equation resulted 
in a further increase in the allowable time step. 

It was shown that coupling the finite difference discretization with a spectral 
technique enabled the use of a coarser grid in both spatial directions. Thus the finite 
difference scheme performed more efficienctly in this context relative to a pure finite 
difference formulation. 
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